Journal of Organometallic Chemistry, 294 (1985) 209–212 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESES AND REACTIONS OF $[\eta^5$ -CH₃C₅H₄Cr(CO)₃]₂

R.M. MEDINA*, A. ALVAREZ-VALDÉS and J.R. MASAGUER

Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid (Spain)

(Received May 16th, 1985)

Summary

The complexes $[\eta^5-CH_3C_5H_4Cr(CO)_3]_2$ have been prepared, and their reactions with trivalent phosphorus ligands L (L = Ph₃P, (MeO)₃P, (EtO)₃P) shown to give $[\eta^5-CH_3C_5H_4Cr(CO)_2L]_2$ complexes.

Introduction

The reactions of $[\eta^5-C_5H_5Cr(CO)_3]_2$ (I) and its derivatives have been less extensively studied than those of their molybdenum analogues [1-5]. Hackett and co-workers described the reactions of I with Cd to give $[\eta^5-C_5H_5Cr(CO_3)_3]_2Cd$ and with Hg or HgCl₂ to give $[\eta-C_5H_5Cr(CO)_3]_2Hg$ [6]; Manning and Thornhill studied the reactions of the latter compound with halogens, HgX₂ (X = Cl, Br, or I) and various phosphorus ligands L (L = Ph₃P, (PhO)₃P and (MeO)₃P) [7]. The reactions of I with thallium(I) acetate, HgCl₂, Ph₃MCl, Ph₂MCl, R₆Pb₂, Me₃PbOAc (M = Sn or Pb; R = Ph, p-MeC₆H₄, p-MeOC₆H₉ or cyclohexyl), I₂, phosphines, and phosphites have also been described [6].

The reactions of I with phosphines give compounds of the composition $[\eta^5-C_5H_5Cr(CO)_2L]_2$ (II). With phosphites the reaction is more complex, and the phosphite may be incorporated as a P(OR)₃, P(OR)₂ or PO(OR)₂ ligand. The dimer II was obtained in good yield only when a stoichiometric amount of trimethyl phosphite reagent was employed [8].

We extend the chemistry of I to a study of the influence of the methyl group substituted in the ring reactions of the mono- and penta-methyl derivatives [6,9] having not been examined previously. Thus we made $[\eta^5-CH_3C_5H_4Cr(CO)_3]_2$ and examined its reactions with ligands L (L = Ph₃P, (MeO)₃P and (EtO)₃P), which give complexes of the type $[\eta^5-CH_3C_5H_4Cr(CO)_2L]_2$.

Discussion and results

The reaction of $[\eta^5-CH_3C_5H_4Cr(CO)_3]_2$ with trivalent phosphorus ligands L $(L = Ph_3P, (MeO)_3P, (EtO)_3P)$ under N₂ leads to release of CO and formation of

TABLE 1 IR SPECTRAL DATA FOR THE COMPLEXES^a

[RCr(CO) ₃] ₂		[RCr(CO) ₂ PPh ₃] ₂		$[RCr(CO)_2 P(OMe)_3]_2 [RCr(CO)_2 P(OEt)_3]_2 $		
1945vs	to de ver			1947m	1944s)	
1920vs				1 924sh	1923sh	
1899vs					(»(CO)
1878vs					((((()))
		1803vs				
		1786vs)	
				868vs	868vs	$\nu_s(\mathrm{PO}_3)$
	δ(Cr-CO) ν(Cr-CO)	689s	ν(CP)	682vs	675vs	ν_s (P–O–C) (aliphatic)
637vs) 615m 593vs		590m 563w 554w	$\delta(Cr-CO)$ $\nu(Cr-CO)$	623w	623w	δ(Cr-CO), ν(Cr-CO)
548vs 528w		519s 508m 496m	γ(PC) ν(Cr-CO) ν(PC)	489s, br	497s, br}	δ _s (PO ₃) δ(Cr–CO), ν(Cr–O)
420m)		464w)	v(Cr-CO)			
397w		397m 287w		399vs 387vs 289w	405vs 386vs 281w	$\delta_{as}(PO_3)$ deg. $\nu(Cr-ring)$ $\nu(Cr-P)$

^{*a*} R = η^{5} -CH₃C₅H₄.

 $[\eta^5$ -CH₃C₅H₄Cr(CO)₂L]₂. The IR spectra of the products, in the 4000-200 cm⁻¹ range show characteristic bands of the methylcyclopentadiene ligand with C_s symmetry [10]. Table 1 lists the IR spectral data for the complexes and the tentative assignments of the characteristic bands of CO, Ph₃P, (MeO)₃P and (EtO)₃P ligands, together with those for the metal-ligand bonds. The ν (CO) vibration frequencies are characteristic of terminal ligands [11]. All the disubstituted compounds give two terminal carbonyl stretching peaks, which is consistent with a structure belonging to the molecular point group C_{2h} . Some of the characteristic bands of Ph₃P, (MeO)₃P and (EtO)₃P and (EtO)₃P ligands are masked by the methylcyclopentadienyl ligand.

In the triphenyl phosphine complex, the vibrations $\nu(CP)$ and $\gamma(PC)$ are tentatively assigned to the bands at 689 and 519 cm⁻¹, respectively. These vibrations in free Ph₃P appear at 697 and 510 cm⁻¹ [12]. Thus a shift to lower and higher frequencies respectively, takes place as a result of the coordination to the metal.

In the $[\eta^{5}-CH_{3}C_{5}H_{4}Cr(CO)_{2}P(OR)_{3}]_{2}$ (R = Me, Et) complexes, the $\nu_{s}(PO_{3})$ vibration appears at 868 cm⁻¹ in both complexes. The vibration $\nu_{s}(P-O-C)$ (aliphatic) appears at 682 (R = Me), and at 675 cm⁻¹ (R = Et). In both cases there is a shift to lower frequencies from those of the free ligands [13,14]. The deformation vibration $\delta_{s}(PO_{3})$ overlaps with $\delta(Cr-CO)$ and $\nu(Cr-CO)$ in the 497-489 cm⁻¹ range. The degenerate $\delta_{asym}(PO_{3})$ is assigned to the strong band at 399 cm⁻¹ (R = Me), and at 405 cm⁻¹ (R = Et) [15].

In all the complexes the $\delta(Cr-CO)$ and $\nu(Cr-CO)$ band appear in the usual range [11,16]. The $\nu(Cr-ring)$ vibration appears in the 397-387 cm⁻¹ range, in agreement with data for similar compounds [17]. The metal-P vibration appears in

the 280-289 cm⁻¹ range, in accord with literature data [11,18].

The ¹H NMR spectra of the $[\eta^5-CH_3C_5H_4Cr(CO)_3]_2$ and $[\eta^5-CH_3C_5H_4Cr(CO)_2L]_2$ complexes each display a multiplet due to the four ring hydrogens (AA'BB') and a singlet arising from the methyl substituted, those features being in accord with those observed for other methylcyclopentadienyl metal complexes [19]. The trimethyl phosphite complex gives a singlet at δ 3.70 ppm assignable to the CH₃O groups of the (MeO)₃P ligand [20]. In the case of the triethylphosphite derivative, a broad singlet at δ 1.50 and a multiplet at 3.42 ppm can be attributed, respectively, to the CH₃ and CH₂ protons of the (EtO)₃P ligand.

The spectra of the triphenylphosphine complex could not be obtained because it is insoluble in the usual organic solvents.

Experimental

All reactions were carried out under oxygen-free N_2 . Trimethyl and triethyl phosphite were dried over sodium and then distilled and degassed before use. Ph_3P was recrystallized from absolute EtOH. Silica gel was activated at 120°C for 1 day, degassed in vacuum, and treated with N_2 before use for GLC. Solvents were dried and deoxygenated. A Osram "Ultra-Vitalux" 300 W lamp was used for photolyses. The chromium was determined by atomic absorption with a Perkin–Elmer 372 spectrophotometer. The phosphorus was determined with a Autoanalyzer Technicon A-II.

The IR spectra were recorded in the range 4000–200 cm⁻¹ with a Nicolet 5DX spectrometer using Nujol and hexachlorobutadiene mulls between CsI windows. ¹H NMR spectra were recorded with a Bruker WM-200-SY spectrometer.

Preparation of $[\eta^5-CH_3C_5H_4Cr(CO)_3]_2$

This was prepared as described by Birdwhistell et al. [21]. Anal.: Found: C, 49.99; H, 3.05; Cr, 23.96. $C_{18}H_{14}O_6Cr_2$ calcd.: C, 50.26, H, 3.25; Cr, 24.17%. ¹H NMR (CDCl₃): δ 6.32 (m, 4H, C₅H₄), 2.20 (s, 3H, CH₃) ppm.

Preparation of $[\eta^5-CH_3C_5H_4Cr(CO)_2PPh_3]_2$

A mixture of equimolar amounts of PPh₃ and $[\eta^5-CH_3C_5H_4Cr(CO)_3]_2$ (0.48 g, 1.1 mmol) in ethanol (25 ml) contained in a 100 ml two-neck flask fitted with N₂ inlet and magnetic stirrer was irradiated with UV light for 2 h. The colour of solution changed from a brown-yellow to a indigo-blue and a yellow-green precipitate formed; this was filtered off, washed several times with ethanol, and dried in vacuum. It was essentially insoluble in the usual organic solvents. The yield was 0.12 g (12%).

Anal.: Found: C, 69.44; H, 5.01; P, 6.79; Cr, 11.49. C₅₂H₄₄O₄P₂Cr₂ calcd.: C, 69.51; H, 4.89; P, 6.89; Cr, 11.57%.

Preparation of $\{\eta^5 - CH_3C_5H_4Cr(CO)_2P(OCH_3)_3\}_2$

Trimethyl phosphite (0.42 ml, 3.4 mmol) was added with stirring to a solution of $[\eta^5-CH_3C_5H_4Cr(CO)_3]_2$ (0.77 g, 1.7 mmol) in 250 ml of tetrahydrofuran contained in a 500 ml two-neck flack fitted with N₂ inlet and magnetic stirrer. Stirring was continued until reaction was complete (ca. 17 min), and during this time the solution changed from a green-yellow to a brownish-yellow as CO was evolved. The THF was

removed under vacuum at room temperature and the brown-green residue was extracted with benzene. The solution was chromatographed under N_2 on a silica gel column (13 × 3 cm) which had been deactivated with ether and then washed with hexane. This complex was eluted with hexane, hexane/benzene, then benzene. The solvent was removed to leave a green-yellow oil, which was dried thoroughly; it could not be obtained in crystalline form.

Anal.: Found: C, 42.29; H, 4.99; P. 9.89; Cr, 16.43. $C_{22}H_{32}O_5P_2Cr_2$ calcd.: C, 42.47; H, 5.14; P. 9.95; Cr, 16.71%. ¹H NMR (CDCl₃, -45°C) δ 5.99 (m, 4H, C₅H₄), 3.70 (s, 9H, OCH₃), 1.80 (s, 3H, CH₃) ppm.

Preparation of $[\eta^5 - CH_3C_5H_4Cr(CO)_2P(OCH_2CH_3)_3]_2$

The procedure described above was used, but with triethyl phosphite (1 ml, 5.6 mmol) and $[\eta^5$ -CH₃C₅H₄Cr(CO)₃]₂ (1.24 g, 2.8 mmol) as reactants. A green-yellow oil was obtained.

Anal.: Found: C, 47.48; H, 6.10; P, 8.56; Cr, 14.48. $C_{28}H_{44}O_{10}P_2Cr_2$ calcd.: C, 47.62; H, 6.23; P, 8.77; Cr, 14.72%. ¹H NMR (CDCl₃): δ 6.02 (m, 4H, C_5H_4), 3.42 (m, 6H, CH₂), 2.10 (s, 3H, CH₃), 1.50 (s, br, 9H, CH₃) ppm.

Acknowledgements

We thank the Departamento de Química Orgánica de la Universidad Autónoma de Madrid (Spain) for recording the ¹H NMR spectra. We express our great appreciation of financial support from the Comisión Asesora de Investigación Científica y Técnica (Spain).

References

- 1 R.J. Haines and C.R. Nolte, J. Organomet. Chem., 24 (1970) 725.
- 2 R.B. King and K.H. Pannell, Inorg. Chem., 7 (1968) 2356.
- 3 R.J. Haines, I.L. Marais and C.R. Nolte, Chem. Comm., (1970) 547.
- 4 R.J. Haines, R.S. Nyholm and M.H.B. Stiddard, J. Chem. Soc. (A), 43 (1968).
- 5 K.W. Barnett and D.W. Slocum, J. Organomet. Chem., 44 (1972) 1.
- 6 P. Hackett, P.S. O'Neill and A.R. Manning, J. Chem. Soc., Dalton Trans., (1974) 1625.
- 7 A.R. Manning and D.J. Thornhill, J. Chem. Soc. (A), (1971) 637.
- 8 Lai-Yoong Goh, M.J. D'Aniello, Jr., S. Slater, E.L. Muetterties, I. Tavanaiepour, M.I. Chang, M.F. Frederich and V.W. Day, Inorg. Chem., 18 No 1 (1979) 192.
- 9 R.B. King, M.Z. Igbal and A.D. King, Jr., J. Organomet. Chem., 171 (1979) 53.
- 10 D.J. Parker, Spectrochim. Acta, 31A (1975) 1789.
- D.M. Adams, Metal-Ligand and Related Vibrations, E. Arnold (Publishers) Ltd. London, 1967, Ch. 3,
 7.
- 12 J. Goubeau and G. Wenzel, Z. Phys. Chem., 45 (1963) 31.
- 13 N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York and London, 1964, Ch. 12.
- 14 L.J. Bellamy, The Infrared Spectra of Complex Molecules, London: Methuen & Co Ltd., New York: John Wiley & Sons, Inc., 1966, Ch. 18.
- 15 M. Tsuboi, J. Am. Chem. Soc., 79 (1957) 1351.
- 16 D.M. Adams, J. Chem. Soc., (1964) 1771.
- E. Maslowsky, Jr., Vibrational Spectra of Organometallic Compounds, Wiley Interscience, 1977, Ch.,
 3.
- 18 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd. ed., Wiley Interscience, 1970, Ch. 3.
- 19 H.E. Bryndza, E.R. Evitt and R.G. Bergman, J. Amer. Chem. Soc., 102 (1980) 4948.
- 20 H.G. Alt, J. Organomet. Chem., 124 (1977) 167.
- 21 R. Birdwhistell, P. Hackett and A.R. Manning, J. Organomet. Chem., 157 (1978) 239.